108 research outputs found

    Laser‐driven strong‐field Terahertz sources

    Get PDF
    A review on the recent development of intense laser‐driven terahertz (THz) sources is provided here. The technologies discussed include various types of sources based on optical rectification (OR), spintronic emitters, and laser‐filament‐induced plasma. The emphasis is on OR using pump pulses with tilted intensity front. Illustrative examples of newly emerging applications are briefly discussed, in particular strong‐field THz control of materials and acceleration and manipulation of charged particles

    Terahertz sum-frequency excitation of a Raman-active phonon

    Get PDF
    In stimulated Raman scattering, two incident optical waves induce a force oscillating at the difference of the two light frequencies. This process has enabled important applications such as the excitation and coherent control of phonons and magnons by femtosecond laser pulses. Here, we experimentally and theoretically demonstrate the so far neglected up-conversion counterpart of this process: THz sum-frequency excitation of a Raman-active phonon mode, which is tantamount to two-photon absorption by an optical transition between two adjacent vibrational levels. Coherent control of an optical lattice vibration of diamond is achieved by an intense terahertz pulse whose spectrum is centered at half the phonon frequency of 40 THz. Remarkably, the carrier-envelope phase of the driving pulse is directly imprinted on the lattice vibration. New prospects in infrared spectroscopy, light storage schemes and lattice trajectory control in the electronic ground state emerge

    Transient birefringence of liquids induced by terahertz electric-field torque on permanent molecular dipoles

    Get PDF
    Collective low-frequency molecular motions have large impact on chemical reactions and structural relaxation in liquids. So far, these modes have mostly been accessed indirectly by off-resonant optical pulses. Here, we provide evidence that intense terahertz (THz) pulses can resonantly excite reorientational-librational modes of aprotic and strongly polar liquids through coupling to the permanent molecular dipole moments. We observe a significantly enhanced response because the transient optical birefringence is up to an order of magnitude higher than obtained with optical excitation. Frequency-dependent measurements and a simple analytical model indicate that the enhancement arises from resonantly driven librations and their coupling to reorientational motion, assisted by the pump field and/or a cage translational mode. Our results open up the path to applications such as efficient molecular alignment, enhanced transient Kerr signals and systematic resonant nonlinear THz spectroscopy of the coupling between intermolecular modes in liquids

    Laser-Driven Strong-Field Terahertz Sources

    Get PDF
    A review on the recent development of intense laser-driven terahertz (THz) sources is provided here. The technologies discussed include various types of sources based on optical rectification (OR), spintronic emitters, and laser-filament-induced plasma. The emphasis is on OR using pump pulses with tilted intensity front. Illustrative examples of newly emerging applications are briefly discussed, in particular strong-field THz control of materials and acceleration and manipulation of charged particles

    Theory of spin-Hall magnetoresistance in the AC (terahertz) regime

    Get PDF
    In bilayers consisting of a normal metal (N) with spin-orbit coupling and a ferromagnet (F), the combination of the spin-Hall effect, the spin-transfer torque, and the inverse spin-Hall effect gives a small correction to the in-plane conductivity of N, which is referred to as spin-Hall magnetoresistance (SMR). We here present a theory of the SMR and the associated off-diagonal conductivity corrections for frequencies up to the terahertz regime. We show that the SMR signal has pronounced singularities at the spin-wave frequencies of F, which identifies it as a potential tool for all-electric spectroscopy of magnon modes. A systematic change of the magnitude of the SMR at lower frequencies is associated with the onset of a longitudinal magnonic contribution to spin transport across the F-N interface.Comment: 21 pages, 9 figure

    Maximizing the amplitude of coherent phonons with shaped laser pulses

    Get PDF
    We perform model calculations of coherent lattice vibrations in solids driven by ultrashort laser pulses. In order to maximize the amplitude of the coherent phonon in the time domain, an evolutionary algorithm optimizes the driving laser field. We find that only a Fourier-limited single pulse yields the maximum phonon amplitude, irrespective of the actual physical excitation mechanism (impulsive or displacive). This result is in clear contrast to the widespread intuition that excitation by a pulse train in phase with the oscillation leads to the largest amplitude of an oscillator. We rationalize this result by an intuitive model and discuss implications for other nonlinear processes such as optical rectification

    Complex THz and DC inverse spin Hall effect in YIG/Cu1x_{1-x}Irx_{x} bilayers across a wide concentration range

    Get PDF
    We measure the inverse spin Hall effect of Cu1x_{1-x}Irx_{x} thin films on yttrium iron garnet over a wide range of Ir concentrations (0.05x0.70.05 \leqslant x \leqslant 0.7). Spin currents are triggered through the spin Seebeck effect, either by a DC temperature gradient or by ultrafast optical heating of the metal layer. The spin Hall current is detected by, respectively, electrical contacts or measurement of the emitted THz radiation. With both approaches, we reveal the same Ir concentration dependence that follows a novel complex, non-monotonous behavior as compared to previous studies. For small Ir concentrations a signal minimum is observed, while a pronounced maximum appears near the equiatomic composition. We identify this behavior as originating from the interplay of different spin Hall mechanisms as well as a concentration-dependent variation of the integrated spin current density in Cu1x_{1-x}Irx_{x}. The coinciding results obtained for DC and ultrafast stimuli show that the studied material allows for efficient spin-to-charge conversion even on ultrafast timescales, thus enabling a transfer of established spintronic measurement schemes into the terahertz regime.Comment: 12 pages, 4 figure
    corecore